Parallelized formulation of the maximum likelihood-expectation maximization algorithm for fine-grain message-passing architectures
نویسندگان
چکیده
Recent architectural and technological advances have led to the feasibility of a new class of massively parallel processing systems based on a fine-grain, message-passing computational model. These machines provide a new alternative for the development of fast, cost-efficient Maximum Likelihood-Expectation Maximization (ML-EM) algorithmic formulations. As an important first step in determining the potential performance benefits to be gathered from such formulations, we have developed an ML-EM algorithm suitable for the high-communications, low-memory (HCLM) execution model supported by this new class of machines. Evaluation of this algorithm indicates a normalized least-square error comparable to, or better than, that obtained via a sequential ray-driven ML-EM formulation and an effective speedup in execution time (as determined via discrete-event simulation of the Pica multiprocessor system currently under development at the Georgia Institute of Technology) of well over two orders of magnitude compared to current ray-driven sequential ML-EM formulations on high-end workstations. Thus, the HCLM algorithmic formulation may provide ML-EM reconstructions within clinical time-frames.
منابع مشابه
Message-passing algorithms for large structured decentralized POMDPs
Decentralized POMDPs provide a rigorous framework for multi-agent decision-theoretic planning. However, their high complexity has limited scalability. In this work, we present a promising new class of algorithms based on probabilistic inference for infinite-horizon ND-POMDPs—a restricted Dec-POMDP model. We first transform the policy optimization problem to that of likelihood maximization in a ...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models are accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive loop d...
متن کاملMessage-Passing for Approximate MAP Inference with Latent Variables
We consider a general inference setting for discrete probabilistic graphical models where we seek maximum a posteriori (MAP) estimates for a subset of the random variables (max nodes), marginalizing over the rest (sum nodes). We present a hybrid message-passing algorithm to accomplish this. The hybrid algorithm passes a mix of sum and max messages depending on the type of source node (sum or ma...
متن کاملDeterministic Quantum Annealing Expectation-Maximization Algorithm
Maximum likelihood estimation (MLE) is one of the most important methods in machine learning, and the expectation-maximization (EM) algorithm is often used to obtain maximum likelihood estimates. However, EM heavily depends on initial configurations and fails to find the global optimum. On the other hand, in the field of physics, quantum annealing (QA) was proposed as a novel optimization appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on medical imaging
دوره 14 4 شماره
صفحات -
تاریخ انتشار 1995